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Viscous dissipative fluid flow past a semi-infinite vertical plate
with variable surface temperature
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SUMMARY

An analysis of the effect of viscous dissipative heat on two-dimensional viscous incompressible fluid
flow past a semi-infinite vertical plate with variable surface temperature is carried out. The dimensionless
governing equations are unsteady, two-dimensional, coupled, and non-linear governing equations. A most
accurate, unconditionally stable and fast converging implicit finite-difference scheme is used to solve
the non-dimensional governing equations. Velocity and temperature of the flow have been presented
graphically for various parameters occurring in the problem. The local and average skin friction and
Nusselt number are also shown graphically. It is observed that greater viscous dissipative heat causes a
rise in the temperature. Copyright q 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Hear transfer by natural convection is frequently encountered in our environment and engineering
devices. Two-dimensional free convection flows past a semi-infinite plate have received the atten-
tion of many researchers because of their wide applications in industry and technological fields.
Polhausen [1] and Ostrich [2] studied steady free convective flow past a semi-infinite vertical
plate by integral and similarity methods, respectively. Hellums and Churchill [3] first studied tran-
sient free convective flow past a semi-infinite vertical plate by explicit finite-difference method.
Soundalgekar and Ganesan [4] studied the problem of transient free convective flow of an incom-
pressible viscous fluid past a semi-infinite isothermal vertical plate by an implicit finite-difference
method, which is unconditionally stable. In all these papers, the viscous dissipative heat was
neglected. However, Gebhart [5] studied the importance of viscous dissipative heat in free con-
vection flows on a vertical surface subject to isothermal and uniform-flux surface conditions.
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Soundalgekar et al. [6] also studied the transient free convection flows of viscous dissipative fluid
past a semi-infinite isothermal vertical plate by using an implicit finite-difference scheme. Ganesan
and Palani [7] studied free convective viscous dissipative fluid flow past a semi-infinite inclined
plate by using an implicit finite-difference scheme. Capper et al. [8] studied formulae for second-
order two-point, boundary value problems. Obrenchkoff-type formulas for finding yn are derived
and these methods are of sixth- and eighth-order accuracy. Variable-step Runge–Kutta Nystrom
methods for the numerical solution of reversible systems were studied by Cash and Girdlestone
[9]. The problem of implementing reversible Runge–Kutta Nystrom reversible integration formu-
lae with varying steps was studied in detail. Discrete conservative vector fields induced by the
trapezoidal method were studied by Iavernaro and Trigiante [10]. BS linear multistep methods on
non-uniform meshes were studied by Mazzia et al. [11].

Viscous dissipation occurs in natural convection in natural devices. Such dissipation effects may
also be present in stronger gravitational fields and in processes wherein the scale of the process
is very large, e.g. on larger planets, in large masses of gas in space and in geological processes
in fluids internal to various bodies. The heat due to viscous dissipation in the energy equation is
very small and is neglected. However, when the gravitational force is intensive or when the Prandtl
number of the fluid is very high, the viscous dissipative effects cannot be neglected.

However, the effect of viscous dissipation in the transient free convection flow of a viscous
incompressible fluid past a semi-infinite vertical plate with variable surface temperature has not
been studied. Hence, the present attempt is to solve the problem of the transient free convection flow
of viscous incompressible fluid past a semi-infinite vertical plate with variable surface temperature
by taking into consideration the viscous dissipative heat and solving the governing non-linear
equations by using the implicit finite-difference scheme of Crank–Nicholson type and studying
the effects of viscous dissipative heat on the time to reach the steady state.

MATHEMATICAL FORMULATION

A two-dimensional unsteady viscous incompressible fluid flow past a semi-infinite vertical plate
with variable surface temperature is assumed. Initially, at time t ′�0, it is assumed that the plate
and the fluid are at the same temperature and at time t ′>0, the temperature of the plate is suddenly
raised to T ′

w(x)= T ′∞ + axn causing currents to flow in the vicinity of the plate. The x-axis
is measured along the plate and y-axis is taken along upward normal to the plate. The effect
of viscous dissipation in the energy equation is considered. Then under these assumptions, the
governing boundary layer equations of mass, momentum and energy for free convection flows
with Boussinesq’s approximation are as follows:
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The initial and boundary conditions are

t ′�0 : u = 0, v = 0, T ′ = T ′∞
t ′>0 : u = 0, v = 0, T ′

w(x)= T ′∞ + axn at y = 0

u = 0, T ′ = T ′∞, at x = 0

u → 0, T ′ → T ′∞, as y → ∞

(4)

Introducing the following non-dimensional quantities:

X = x

L
, Y = y

L
Gr1/4, U = uL
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Equations (1)–(4) are reduced to the following non-dimensional form:
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where � = g�L/Cp.
Here � is the dissipation number, which is equal to the ratio of the kinetic energy of the flow

and the heat, transferred to the fluid.
The corresponding initial and boundary conditions in non-dimensional quantities are given by

t�0 : U = 0, V = 0, T = 0

t>0 : U = 0, V = 0, T = Xn at Y = 0

U = 0, T = 0 at X = 0

U → 0, T → 0 as Y → ∞

(9)

NUMERICAL PROCEDURE

The two-dimensional, non-linear, unsteady, and coupled partial differential equations (6)–(8)
under the initial and boundary conditions (9) are solved using an implicit finite-difference scheme
of Crank–Nicolson type which is fast convergent and unconditionally stable.
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Figure 1. Transient velocity profiles at X = 1.0 for different n and � (∗ steady state).

The finite-difference equation corresponding to Equations (6)–(8) are given by
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Figure 2. Transient temperature profiles at X = 1 for different n and � (∗ steady state).
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Figure 3. Steady-state velocity profiles at X = 1.0 for different Pr , n and �.

The values of U, V and T are known at all grid points at t = 0 from the initial conditions.
During any one time step, Uk

i, j and V k
i, j appearing in the finite-difference equation are treated as

constants. The U, V and T are calculated at (k+1)th time level using the known values at previous
kth time level and this can be done as follows.

Equation (12) at every internal nodal point on a particular i level constitutes a tri-diagonal
system of equations, which are solved by Thomas algorithm, described by Carnahan et al. [12].
Thus, the values of T are found at every nodal point on a particular i at (k+1)th time level. Using
the values of T at (k + 1)th time level in Equation (11), the values of U at (k + 1)th time level are
found in a similar manner. Then, the values of V are calculated explicitly by using Equation (10)
at every nodal point on a particular i level. This process is repeated for various i levels. Thus, the
values of T,U and V are known at all grid points in the rectangular region at (k+1)th time level.

This process is repeated in time until steady state is reached. The steady-state solution is assumed
to have been reached, when the absolute differences between values of U as well as temperature
T at two consecutive time steps are less than 10−5 at all grid points. Computations have been
carried out for different values of parameters.
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Figure 4. Steady-state temperature profiles at X = 1.0 for different Pr , n and �.

The region of integration is considered as a rectangle with sides Xmax(= 1.0) and Ymax (= 24.0)
where Ymax corresponds to Y =∞ which lies very well outside the momentum and thermal
boundary layers. After experimenting with a few sets of mesh sizes, the mesh sizes are fixed
as �X = 0.05,�Y = 0.25 and �t = 0.01. The Crank–Nicolson implicit finite-difference scheme is
always stable and convergent.

RESULTS AND DISCUSSION

We have computed the time required to reach the steady state for different values of the dissipation
parameter �, for fluids with the Prandtl number and exponent n, power law for variable surface
temperature. In Figures 1 and 2, the transient velocity and temperature profiles are shown for n and
dissipation parameter �. Velocity increases steadily as time advances, reaching steady state. When
n increases, the temperature gradient along the plate near the leading edge decreases. That is,
the impulsive force along the plate decreases with increasing n. Due to these facts, the difference
between the temporal maximum value and steady-state value decreases with n. Both velocity and
temperature decrease as n increases.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:1157–1169
DOI: 10.1002/fld



1164 G. PALANI

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1
X

τ X
/G

r3/
4

n = 1.0

n = 2.0
Pr  =  0.2
ε = 2
ε = 1

Pr = 0.71 ε =1

ε = 1
Pr = 0.2
Pr = 0.71

Pr = 7.0
ε = 2
ε = 1

Figure 5. Local skin friction.

In Figures 3 and 4, the steady-state velocity and temperature profile at X = 1.0 for different
Pr , n and � are shown. We observe from these curves that steady-state velocity increases with
greater viscous dissipative heat for all Prandtl number of the fluids. From both these figures, we
observe that the steady-state velocity decreases with an increasing Prandtl number. However, the
time required to reach steady state increases with the increasing Prandtl number of the fluid. It is
observed that the temperature increases with a greater viscous dissipative heat irrespective of the
Prandtl number of the fluid. Also, we observed from these figures that temperature decreases as
Pr increases.
Knowing the velocity and temperature field, it is interesting to study from the practical point of

view, the skin friction and the rate of heat transfer. The local and average skin friction and Nusselt
number, in non-dimensional quantities are

�X =Gr3/4
(

�U
�Y

)
Y=0

(13)
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Figure 6. Local Nusselt number.
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The derivatives involved in Equations (13)–(16) are evaluated by using a five-point approximation
formula and then the integrals are evaluated by Newton–Cotes-closed integration formula.

The local wall shear stress decreases as Pr increases, because velocity decreases with an
increasing value of Pr. Also, it is observed that local skin friction decreases as n increases
(Figure 5). This is because of the fact that the velocity gradient decreases near the plate as n
increases which is shown in Figure 3. Greater viscous dissipative heat causes a rise in the local
skin friction.
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Figure 7. Average skin friction.

Local Nusselt number is shown in Figure 6 and it is observed that Nusselt number increases
with n. However, it is observed that the above trend is reversed near the leading edge. The local
Nusselt number increases with Pr. Also, it is observed that greater viscous dissipative heat causes
a decrease in the local Nusselt number.

Average skin friction and Nusselt number are plotted in Figures 7 and 8, respectively. Average
skin friction decreases as n increases. This is due to the fact that the velocity gradient near the
plate decreases as n increases. The average skin friction increases with time ‘t’ and then remains
stationary for large values of ‘t’. A greater viscous dissipative heat causes a rise in the average
skin friction. Average skin friction decreases with increasing Pr throughout the transient period.

Figure 8 shows that there is no change in average Nusselt number in the initial period with respect
to n. This reveals that initially heat transfer is due to conduction only. In the initial convection
period average Nusselt number decreases slightly and then increases with n. Also, we observed
from these figures that the average Nusselt number decreases with an increase of the viscous
dissipation parameter irrespective of the Prandtl number. The average Nusselt number increases
with increasing Pr.
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Figure 8. Average Nusselt number.

NOMENCLATURE

a constant
Cp constant pressure specific heat
Gr Grashof number
g acceleration due to gravity
L reference length
n exponent in the power law variation of the wall temperature
Nu dimensionless average Nusselt number
NuX dimensionless local Nusselt number
Pr Prandtl number
T ′ temperature
T dimensionless temperature
t ′ time
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t dimensionless time
u, v velocity components in x, y directions, respectively
U, V dimensionless velocity components in X, Y directions, respectively
x spatial coordinate along the plate
X dimensionless spatial coordinate
y spatial coordinate along upward normal to the plate
Y dimensionless spatial coordinate along upward normal to the plate

Greek symbols

� thermal diffusivity
� volumetric coefficient of thermal expansion
� dissipation number
� coefficient of viscosity
� kinematic viscosity
� density
�X dimensionless local skin friction
� dimensionless average skin friction

Subscripts

i grid point along the X direction
j grid point along the Y direction
w conditions on the wall
∞ free stream condition

Superscript

k time step level
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